Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Karmakar Sanjib, ${ }^{\text {a* }}$
 Patowary Kabita, ${ }^{\text {b }}$

P. Barman, ${ }^{\text {b }}$ D. Hazarika ${ }^{\text {c }}$ and
S. K. Bhattacharjee ${ }^{\text {b }}$
${ }^{\text {a }}$ University Science Instrumentation Centre (USIC), Gauhati University, Guwahati 781014, India, ${ }^{\text {b }}$ Department of Chemistry, Gauhati University, Guwahati 781014, India, and ${ }^{\mathrm{c}}$ Department of Chemistry, Dimoria College, Khetry, Assam, India

Correspondence e-mail:
sanjibkk@rediffmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.074$
$w R$ factor $=0.231$
Data-to-parameter ratio $=13.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4'-Methylazobenzene-2-sulfenyl cyanide

The title compound [systematic name: 2-(p-tolyldiazenyl)phenyl isothiocyanate], $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}$, is non-ionic in nature. Highly electronegative atoms like Br or Cl in sulfenyl halides make the S atom sufficiently electron deficient for strong ortho azo-sulfur interaction in sulfenyl bromides or chlorides of ortho mercaptoazo compounds; this leads to a planar thiadiazolium structure, in which the S atom interacts with the ortho azo group. However, in case of the 4^{\prime}-Me title compound, the S atom is not sufficiently electron deficient, and no intramolecular ortho azo-sulfur interaction exists. The molecule is almost planar. There are no hydrogen bonds and the crystal structure is stabilized by van der Waals interactions.

Comment

With a view to investigating the effect of an electron-releasing group in the 4^{\prime}-position, and an electron-withdrawing group on the S atom of azobenzene-2-sulfenyl compounds in the formation of thiadiazolium structures by intramolecular ortho azo-sulfur interaction, the present study of the title compound, (I), was undertaken. Investigation shows that the sulfenyl group does not approach the azo group of the trans-azobenzene plane [S1 $\cdots \mathrm{N} 12.698$ (4) A]. Such a situation was also found in azobenzene-2-sulfenyl cyanide (Kakati \& Chaudhuri, 1968). On the other hand, electron-releasing groups at the 2^{\prime} or 4^{\prime}-positions of the arylazo moiety will increase the electron density at the azo group, and will favour the formation of a thiadiazolium structure (Karmakar et al., 2001), due to ortho azo-sulfur interaction. Both the $\mathrm{Csp}{ }^{2}-\mathrm{S}$ and $\mathrm{S}-\mathrm{Csp}$ bond lengths are in the expected ranges $[\mathrm{C} 2-\mathrm{S} 1=1.785$ (4) and $\mathrm{S} 1-\mathrm{C} 7=1.690(6) \AA$] whereas, in the structure of azo-benzene-2-sulfenyl cyanide (Kakati \& Chaudhuri, 1968), these bond lengths were 1.68 (2) and 1.89 (2) A , respectively.

(I)

The two aromatic rings in azobenzene-2-sulfenyl cyanide (Kakati \& Chaudhuri, 1968) are not coplanar, but in the title compound they are almost coplanar [dihedral angle $3.3(2)^{\circ}$]. The coplanarity is presumed to be due to the electronreleasing effect of the methyl group, which is present in the title compound, and the electron-withdrawing effect of the - SCN group. Atom S1 is coplanar with the attached aromatic ring, whereas atoms C 7 and N 3 deviate from it by 0.113 (6) and 0.152 (6) \AA, respectively.

Received 9 December 2003 Accepted 23 December 2003 Online 17 January 2004

Figure 1
ORTEP-3 (Farrugia, 1997) diagram of (I), with 30% probability displacement ellipsoids. H atoms are shown as circles of arbitrary radius.

Experimental

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}$
$M_{r}=253.33$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=14.516(2) \AA$
$b=4.784(2) \AA$
$c=19.194(4) \AA$
$\beta=107.62(1)^{\circ}$
$V=1270.4(6) \AA^{3}$
$Z=4$
$D_{x}=1.324 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=55-65^{\circ}$
$\mu=2.13 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.53 \times 0.40 \times 0.20 \mathrm{~mm}$
Data collection

Enraf-Nonius CAD-4	$R_{\text {int }}=0.053$
\quad diffractometer	$\theta_{\max }=70.1^{\circ}$
2ω scans	$h=0 \rightarrow 17$
Absorption correction: ψ scan	$k=0 \rightarrow 5$
\quad (North et al., 1968)	$l=-23 \rightarrow 22$
$T_{\min }=0.414, T_{\max }=0.654$	4 standard reflections
2342 measured reflections	every 600 reflections
2266 independent reflections	intensity decay: none

1509 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.074$
$w R\left(F^{2}\right)=0.231$
$S=1.08$
2266 reflections
166 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

S1-C7	$1.690(6)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.452(5)$
$\mathrm{S} 1-\mathrm{C} 2$	$1.785(4)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.475(5)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.208(4)$		
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 2$	$100.0(2)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$128.3(4)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1$	$112.2(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$111.4(4)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8$	$111.2(3)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$117.8(4)$
$\mathrm{C} 13-\mathrm{C} 8-\mathrm{N} 2$	$114.8(3)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 14$	$122.0(4)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 2$	$124.8(4)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8$	$179.7(3)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$2.7(6)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 13$	$-179.1(4)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-178.3(4)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$2.0(6)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	$0.9(5)$

Figure 2
The packing of (I), viewed down the b axis.

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values of the ring H atoms were refined as a common value. Similarly, the $U_{\text {iso }}(\mathrm{H})$ values of the methyl H atoms were set equal and refined as a separate common value.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 EXPRESS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the All India Institute of Medical Sciences, New Delhi, for the data collection.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kakati, K. K. \& Chaudhuri, B. (1968). Acta Cryst. B24, 1645-1652.
Karmakar, S., Talukdar, A. N., Barman, P. \& Bhattacharjee, S. (2001). Indian J. Pure Appl. Phys. 39, 357-360.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

