Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Karmakar Sanjib,^a* Patowary Kabita,^b P. Barman,^b D. Hazarika^c and S. K. Bhattacharjee^b

^aUniversity Science Instrumentation Centre (USIC), Gauhati University, Guwahati 781014, India, ^bDepartment of Chemistry, Gauhati University, Guwahati 781014, India, and ^cDepartment of Chemistry, Dimoria College, Khetry, Assam, India

Correspondence e-mail: sanjibkk@rediffmail.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.074 wR factor = 0.231 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

DOI: 10.1107/S1600536803029702

4'-Methylazobenzene-2-sulfenyl cyanide

The title compound [systematic name: 2-(*p*-tolyldiazenyl)phenyl isothiocyanate], $C_{14}H_{11}N_3S$, is non-ionic in nature. Highly electronegative atoms like Br or Cl in sulfenyl halides make the S atom sufficiently electron deficient for strong *ortho* azo-sulfur interaction in sulfenyl bromides or chlorides of *ortho* mercaptoazo compounds; this leads to a planar thiadiazolium structure, in which the S atom interacts with the *ortho* azo group. However, in case of the 4'-Me title compound, the S atom is not sufficiently electron deficient, and no intramolecular *ortho* azo-sulfur interaction exists. The molecule is almost planar. There are no hydrogen bonds and the crystal structure is stabilized by van der Waals interactions.

Comment

With a view to investigating the effect of an electron-releasing group in the 4'-position, and an electron-withdrawing group on the S atom of azobenzene-2-sulfenyl compounds in the formation of thiadiazolium structures by intramolecular ortho azo-sulfur interaction, the present study of the title compound, (I), was undertaken. Investigation shows that the sulfenyl group does not approach the azo group of the trans-azobenzene plane $[S1 \cdots N1 2.698 (4) \text{ Å}]$. Such a situation was also found in azobenzene-2-sulfenyl cyanide (Kakati & Chaudhuri, 1968). On the other hand, electron-releasing groups at the 2'or 4'-positions of the arylazo moiety will increase the electron density at the azo group, and will favour the formation of a thiadiazolium structure (Karmakar et al., 2001), due to ortho azo-sulfur interaction. Both the Csp^2-S and S-Csp bond lengths are in the expected ranges [C2-S1 = 1.785 (4)] and S1-C7 = 1.690(6) Å] whereas, in the structure of azobenzene-2-sulfenyl cyanide (Kakati & Chaudhuri, 1968), these bond lengths were 1.68 (2) and 1.89 (2) Å, respectively.

The two aromatic rings in azobenzene-2-sulfenyl cyanide (Kakati & Chaudhuri, 1968) are not coplanar, but in the title compound they are almost coplanar [dihedral angle 3.3 (2)°]. The coplanarity is presumed to be due to the electron-releasing effect of the methyl group, which is present in the title compound, and the electron-withdrawing effect of the -SCN group. Atom S1 is coplanar with the attached aromatic ring, whereas atoms C7 and N3 deviate from it by 0.113 (6) and 0.152 (6) Å, respectively.

Received 9 December 2003 Accepted 23 December 2003 Online 17 January 2004

Figure 1

ORTEP-3 (Farrugia, 1997) diagram of (I), with 30% probability displacement ellipsoids. H atoms are shown as circles of arbitrary radius.

 $D_x = 1.324 \text{ Mg m}^{-2}$

Cell parameters from 25

 $0.53 \times 0.40 \times 0.20 \text{ mm}$

Cu Ka radiation

reflections

T = 293 (2) K

Block, yellow

 $R_{\rm int} = 0.053$

 $\theta_{\rm max} = 70.1^{\circ}$

 $h = 0 \rightarrow 17$

 $l = -23 \rightarrow 22$

4 standard reflections

every 600 reflections

intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.1132P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 1.0209P]

 $(\Delta/\sigma)_{\rm max} = 0.048$

 $\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \mathring{A}}^{-3}$

 $\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

 $k = 0 \rightarrow 5$

 $\begin{array}{l} \theta = 55\text{--}65^{\circ} \\ \mu = 2.13 \ \mathrm{mm}^{-1} \end{array}$

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{11}N_3S\\ M_r = 253.33\\ \text{Monoclinic, } P2_1/c\\ a = 14.516\ (2)\ \text{\AA}\\ b = 4.784\ (2)\ \text{\AA}\\ c = 19.194\ (4)\ \text{\AA}\\ \beta = 107.62\ (1)^\circ\\ V = 1270.4\ (6)\ \text{\AA}^3\\ Z = 4 \end{array}$

Data collection

Enraf-Nonius CAD-4 diffractometer 2ω scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.414$, $T_{\max} = 0.654$ 2342 measured reflections 2266 independent reflections 1509 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.074$ $wR(F^2) = 0.231$ S = 1.082266 reflections 166 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

S1-C7	1.690 (6)	N1-C1	1.452 (5)
S1-C2	1.785 (4)	N2-C8	1.475 (5)
N1-N2	1.208 (4)		
C7-S1-C2	100.0 (2)	C6-C1-N1	128.3 (4)
N2-N1-C1	112.2 (3)	C2-C1-N1	111.4 (4)
N1-N2-C8	111.2 (3)	C12-C11-C10	117.8 (4)
C13-C8-N2	114.8 (3)	C12-C11-C14	122.0 (4)
C9-C8-N2	124.8 (4)		
C1-N1-N2-C8	179.7 (3)	N2-N1-C1-C6	2.7 (6)
N1-N2-C8-C13	-179.1(4)	N2-N1-C1-C2	-178.3(4)
N1-N2-C8-C9	2.0 (6)	N1-C1-C2-S1	0.9 (5)

H atoms were placed in calculated positions, with C–H distances in the range 0.93–0.96 Å. The $U_{iso}(H)$ values of the ring H atoms were refined as a common value. Similarly, the $U_{iso}(H)$ values of the methyl H atoms were set equal and refined as a separate common value.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *CAD-4 EXPRESS*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-*3 (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

The authors thank the All India Institute of Medical Sciences, New Delhi, for the data collection.

References

- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kakati, K. K. & Chaudhuri, B. (1968). Acta Cryst. B24, 1645-1652.
- Karmakar, S., Talukdar, A. N., Barman, P. & Bhattacharjee, S. (2001). Indian J. Pure Appl. Phys. 39, 357–360.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.